New supercap batteries out of India show promise
    Physicists solve decades-old scientific mystery of negative differential resistance

    As mentioned before I am not overly concerned about carbon in the atmosphere, however this new development could help solve that problem and provide a new foundation for fuel source. Early days still but worth pursuing

     Carbon dioxide conversion process may be adapted for biofuel synthesis

    Led by Yilin Hu, UCI assistant professor of molecular biology & biochemistry at the Ayala School of Biological Sciences, the researchers found that they could successfully express the reductase component of the nitrogenase enzyme alone in the bacterium Azotobacter vinelandii and directly use this bacterium to convert CO2 to CO. The intracellular environment of the bacterium was shown to favor the conversion of CO2 in a way that would be more applicable to the future development of strategies for large-scale production of CO. The findings were surprising to the group, as nitrogenase was only previously believed to convert nitrogen (N2) to ammonia (NH3) within the bacterium under similar conditions. The full study can be found online in Nature Chemical Biology.

    Professor Hu prepares to analyze a new set of data. CREDIT: UCI

    Hu and her colleagues knew that the intracellular environment of the bacterium Azotobacter vinelandii favors other reduction reactions, due in part to its well-known oxygen protection mechanisms and presence of physiological electron donors. But they were unsure if the intracellular environment would support the conversion of CO2 to CO.

    They were excited to discover that the bacterium could reduce CO2 and release CO as a product, which makes it an attractive whole-cell system that could be explored further for new ways of recycling atmospheric CO2 into biofuels and other commercial chemical products. These findings of Hu’s group establish the nitrogenase enzyme as a fascinating template for developing approaches to energy-efficient and environmentally-friendly fuel production.

    “Our observation that a bacterium can convert CO2 to CO opens up new avenues for biotechnological adaptation of this reaction into a process that effectively recycles the greenhouse gas into the starting material for biofuel synthesis that will help us simultaneously combat two major challenges we face nowadays: global warming and energy shortage,” said Hu.

    ###

    Johannes Rebelein, Martin Stiebritz and Chi Chung Lee from UCI contributed to the study, which was supported by UCI and a Hellman Fellowship.

    New supercap batteries out of India show promise
    Physicists solve decades-old scientific mystery of negative differential resistance
    Twitter Auto Publish Powered By : XYZScripts.com