«

»

Quentron Quantum Energy Converter

facebooktwittergoogle_plusredditpinterestlinkedinfacebooktwittergoogle_plusredditpinterestlinkedinby feather

 

PhenomenaofEnergyProductionandConversionGroup

While the quest for a sustainable energy typically produces stories of new ideas that span from solar to biofuels; occasionally we see progress in the fringes of science that would make technology and human advancement jump forward centuries in one giant leap. Technologies such as LENR, plasma fusion, and magnetic propulsion are but a few of these. I stumbled upon another such technology. A company called Quentron has been working on another Quantum Energy Converter technology that fits this description. 

 

The Quentron Quantum Energy Converter uses several principles to include Thermionic Emission, Secondary Electron Emission, Electron Tunnelling, and Barrier Height to stimulate metals to absorb and release free electrons from the ambient.

 

Please their short version technical description below. Source: Quentron.com

[jbox vgradient=”#E6F5EB|#FFFFFF” shadow=”7″ jbox_css=”border:2px solid #9d9d9d”;]

For the benefit of the general public I am going to try and keep this very simple so please excuse any overly reduced concepts or calculations. It would be useful if some reading was done on the relevant subjects and so I provide some links.

Here are some useful links for introductory reading;

Thermionic Emission

Secondary Electron Emission

Electron Tunnelling

Barrier Height

Electron Tunnelling Calculator

—————————————————

Here are some values to use in the electron tunnelling calculator

Particle energy = 0.05eV
Electron mass (kg) = 9.11×10−31
Barrier Height = 0.1eV
Thickness (m) = 2 x 10-9

Note; for room temperature we will use 300K, at this temp the average electron particle energy is approx 0.026eV, for the purpose of calculating a tail energy electron tunnelling probability using the above equation link we will use a value of 0.05eV, this particle energy number relates to the the population of electrons of a room temperature emitter having an effective temperature of approx 600K or 2x the average temperature. The population of such electrons as a percentage of the total available free electrons is a few percent (the actual number will be calculated later in this article) but for now let’s say it is 1%.

Using these numbers in the calculator you will see that we get an electron tunnelling probability of approx 1:100 and therefore a predicted forward tunnel current of 1:100 x 1% = 0.0001 of the available electron population.

The population of quasi free electrons on the surface of a typical metal can be estimated roughly by the total number of atoms of a single layer, this is approx 1E12/cm2, and by assuming one quasi free electron per atom, now as the electrons at the surface are oscillating at a mean frequency of approx 3E13Hz (10um wavelength) the total population of electrons expressed as though it is an electrical current is 3E25, as an Ampere is 6.24E18 electrons then we get a gross value of 5,000,000A/cm2. If we use a lesser figure to take into account only electrons near normal to the surface we arrive at the accepted number of 1,000,000A/cm2.

So for now we shall see that the theoretical currents of thermally excited electrons tunnelling across nm sized gaps are of the order of 100A/cm2 for a 1:100 probability, and if the gap is decreased or the barrier height reduced (or both) then the current increases to more than 10,000A/cm2. Of course this tunnelling current is a one way measure, at this point we have not calculated the reciprocal currents as may flow, nonetheless these figures are in total agreement with present day tunnel diodes where 460kA/cm2 currents have been recorded with only modest DC bias (<100mV).

The available forward current in a normal unbiased MIM tunnel diode (MIMTD) are of course completely in balance with the reverse current giving a net zero current flow. Quenco operates by suppressing the reverse current to create a net positive current flow. This is of course the claim made that will be publicly proved in due course, but for now we shall see how it works in theory and how it works in a macro device (already proved).

That a MIMTD does not produce power by converting ambient heat we can take as an assumed fact for otherwise it would have been detected, but the mechanism by which this balance is achieved is important in understanding how the Quenco works. We see that if we have a low work function emitter that forms a low barrier height to the insulator it in the first instance allows high forward tunnelling to occur, this tunnelling however quickly becomes balanced by a reverse tunnelling current. The mechanism is simple enough, the electrons captured by the collector raise the electrical potential of that electrode (often referred to as the chemical potential) and as it rises then the quasi free electrons have a reduced barrier height so the probability of tunnelling back the emitter increases. One can simply deduce by the absence of power production in unbiased MIMTD that the potential increase at the collector never exceeds the potential barriers in the external circuit (the wires / circuit that go from the collector to the emitter via a load). The external potential barrier(s) of the return circuit is primarily composed of dissimilar metals that form a barrier known as a contact potential difference or cpd, in trying to determine the work function of metals one method is the cpd, there is also a thermionic and photoelectric measurement. If we consider two different metals in contact we can imagine that the free electron binding energy of one being greater than the other tends to prevent electrons going from the high work function metal to the lower work function metal, going against this tendency requires a bias and as it happens this is equal to the MIMTD potential at equilibrium, in other words nature provides a perfect balance even though the mechanisms involved are complex.

Contact Potential Difference http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_3/4_3.html

So we see that what we need to produce power is an imbalance and this is precisely what the Maxwell Demon debate is all about, is there a mechanism that can favour the movement of energetic particles in a particular direction? There are many who have worked on this idea and in my opinion Professor X.Y. Fu of China demonstrated such about 15 years ago but he has been either ridiculed or ignored, also working in this field are Prof Daniel Sheehan of USC and Dr Germano D’Abramo, and many others.

Professor XY Fu’s paper   http://arxiv.org/abs/physics/0311104

To take this brief course out of the purely theoretical we introduce the already many many times reproduced (including independently) and tested (so the claim of proved) macro version for analysis. The next two diagrams show the conventional vacuum diode that is in assumed perfect balance (no output) and the device previously referred to as the sebithenco (self biased thermionic energy convertor). Note the only difference between the devices is the additional grid that is shorted to the Anode (collector).

The metal oxide coating of the emitter is the common type found in radio tubes, a better (room temperature) emitter would be the Ag.O.Cs typically found in old PM tube

Classic Vacuum Diode

Classic Vacuum Diode

SEBITHENCO

SEBITHENCO

First we shall carefully consider the above device without the Grid, in this device at time zero and irrespective of temperature (though this device is best suited for 1000K) energetic electrons escape the emitter and some will cross the vacuum gap and collide with the collector, some will bounce off the collector and some will be absorbed. Of the ones that bounce back some will do so elastically, some with lost kinetic energy and some with more energy (so called super-elastic), the amount of each species is dependent on the chemical potential of the collector, the incident angle of the collision and the incident energy. Furthermore there exists a yield of secondary electrons, this yield rises with chemical potential, incident angle and collision energy, typically the yield of secondary electron emissions in a vacuum tube device when used as a power amplifier or rectifier is not of much interest as it is a small percentage of the beam current. When vacuum tubes were first employed it was noted that in small signal amplifiers there could be a high level of noise attributed to secondary emissions and as a solution designers added a wire grid in close proximity to the Anode, the purpose of this Grid was to suppress secondary electron emissions and it is in fact called the Suppressor grid, or otherwise G3.

Still with the first device, we understand that at some point the number of electrons captured by the Anode must be equal to the number emitted otherwise there would be a nett flow of electrons. This obvious fact leads us to an understanding that thermionic emissions and secondary electron emissions must form a balanced equation, as with all such balanced equations we see that there has to be a parameter that provides a regulating effect. Clearly the self balancing effects are that as the chemical potential rises in the Collector so too must the emission of thermionic electrons, however the production of secondary electrons, while increased by rising chemical potential is at the same time reduced when collision energies drop. The fact is that the collision energy of an electron from the Emitter to the Collector is reduced as the Collector becomes negatively charged, this is a simple matter of electric fields causing a ballistic electron to do work as it approaches the Collector. Of course this change in secondary electron emission yield is also happening at the emitter for electrons colliding with it from the Collector. It matters not in explaining the Quenco or the Sebithenco to reduce these counterbalancing effects with any great precision as the starting point is that they do in fact balance perfectly (or at least as perfect as would likely have been casually observed). The issue of perfection of balance was dealt with in a series of papers by Germano D’Abramo, we have had many conversations on the subject over the years, we disagree on some things but nonetheless he is a noted international mathematician who finds the issue worth discussion. The gist of his paper, which at one revision stage acknowledged my contribution, is that he argues even a simple vacuum diode will show a tiny imbalance, however it should be noted that he talks of room sized devices.

Paper by Dr Germano D’Abramo on ambient heat to power using a simple structure http://arxiv.org/pdf/0912.4818.pdf

We now consider the effect of the Suppressor grid as used in the Sebithenco and the analogous mid layer of the Quenco. The actual current flowing from the emitter (cathode) to the collector (anode) in an unbiased vacuum diode, Sebithenco or Quenco is not a constant at a constant temperature but rather a function of the potential of the collector, clearly as the collector becomes more negative it will choke off the population of electrons having sufficient energy to reach it, thus when the device(s) are operated in an open circuit we will see that the voltage will plateau, not particularly surprising except that the level of this voltage is a lot higher than most would expect (if they expected anything other than zero). The full appreciation of the dynamics of this class of device necessitates us to understand both the short circuit device and the open circuit one, this essentially allows us to estimate the governing equations. The ability to provide a comprehensive and proved mathematical proof is as yet impossible for the surface physics, sub surface physics and interfacial considerations are just too complex and as yet poorly understood by science. I point the interested reader to the fact that most attempts in this area are about arguing which model better fits empirical data and that there are a number of monte carlo simulations that can be Googled. Nonetheless I will attempt to explain at the lay level how clearly the Quenco and Sebithinco can be theoretically “proved”.

Quenco as drawn by Broli from Overunity

Quenco as drawn by Broli from Overunity

When used in classic radio applications the suppressor grid is biased so as to be negatively charged in absolute terms and so being a negatively charged coulombic barrier, this results in the secondary electron emissions being significantly contained within the interval of the anode and the suppressor grid, the electrons leaving the anode are subject to an electrostatic repulsive force tending to deflect them back towards the anode (which is of course positively charged). The electrons that created the secondary electron emissions have a tendency to be normal to the anode (impacting vertically) whereas the secondary emission electrons have a wide range of emission angles and in fact tend to not be represented in the normal to the plane vector since that is the direction of the incoming impacting electron. In any case the simple fact that incoming electrons are essentially vertical and the secondaries are not means that the charged suppressor grid will tend to frustrate the back flow current. From the last paragraph it was noted that the perfect balance of a thermionic diode immersed in an isothermal bath (ie just sitting in an ambient environment) involved components of secondary electron emission currents, so any influence on the secondary electron emission current needs to be balanced lest there be a macro and continual imbalance in the device that would, for want of a better expression, violate Kelvin’s interpretation of the Second Law of Thermodynamics.

Second Law of Thermodynamics http://en.wikipedia.org/wiki/Second_law_of_thermodynamics

It should be noted that the suppressor grid is proximal to the anode in radio tubes and that in the Sebithenco and the Quenco the same geometry exists. This asymmetry means that the suppression of secondary electron emission is greater at the anode than the cathode even when the device is otherwise in equilibrium, this is perhaps not obvious and to understand this effect we must first imagine that the suppressor is uncharged. When the classic vacuum diode is immersed in an isothermal bath the nett current is zero, similarly when the Sebithenco is immersed in an isothermal bath with the grid unbiased it will have a nett zero current. If we bias the Sebithenco grid with a negative charge we know there is an effect on the secondary electron emission current that was just prior in balance, significant as this is it is not the only shift in the parameters needed for perfect balance, the proximal negative charge of the grid also means that collector’s chemical potential is also reduced. Since the quasi free electrons in the metal are mobile then the presence of an external electric field (negative) will push them inward (away from the charged grid), when an electron is pushed inwards it of course means that it has to have greater kinetic energy in order to thermionically escape the metal, so the charge on the grid means that reverse direction secondary electron emission current is reduced, and so too is the reverse direction thermionic current. Further the depression of the surface charge of a metal surface also means that there is a partial shielding effect to thermionic emission simply as the atoms of the metal become a physical barrier, whilst this effect is not large it is not insignificant when we talk of perfect balance. Now if the device is to remain in perfect balance we will need to equally effect the forward currents (thermionic and secondary), that they are not so equally effected is the essence of the operation of the Sebithenco and Quenco.

We will now examine the simultaneous change to the forward and reverse currents in the presence of a biased grid.

With reference to what most say is the impossibility of the Sebithenco or the Quenco as a Maxwellian Demon I think it is worth noting that the most persistent argument is that a demon would need to expend energy in sorting hot from cold, fast from slow. It is clearly not the case in either the Sebithenco or Quenco, the sorting is of energy by electrostatics where the sorted particles act only against static charge. So for those that wish to deal with this other than by evidence (replicated working Sebithenco’s) the argument would need to be different, and I say I know of no sensible argument against a working demon if the said demon does not require energy to be expended on its function. Even arguments involving information theory propose that there is an energy cost in observation that is greater than the benefit of the particle energy partition, though it is oft expressed as an increase in entropy caused by lost information, incredulously one widely accepted argument is that the Demon runs out of paper upon which to write down observations and so must reuse the paper for new entries, I must say it is from such tripe and silly arguments that I always felt there was a reason and justification to doubt Lord Kelvin and search for a viable Demon, so here I am………….. and it only took me 34 years.

Electron K.E to P.E.

Electron K.E to P.E.

As a background to the development of the Quenco concept the above conceptual device was considered, it simply shows thermionic electrons emitted from a room temperature emitter. The emitted electrons are subject to an electrostatic repulsive force resulting in the interaction with the fixed charge (shown as purple spheres). The effect is that only the most energetic electrons (hot electrons) are able to reach the upper plateau where they have lost their kinetic energy and are hence then ultra cold, here subject to the electrostatic forces they are essentially pushed into the gold collector. It should be noted that the percentage of electrons that can make this journey can be adjusted by the charge of the purple spheres and by the geometry. Accordingly it can be seen that we can raise the potential energy accumulated at the upper gold plateau and to thus have a calculated emf (voltage) greater than the counter force existing by virtue of the contact potentials in the return circuit. In simple terms the device suggests we can violate the Lord Kelvin interpretation of the 2nd Law. This idea was never itself built as a real device but it led to the testable device shown in the $25,000 challenge.

Note from the previous description that the production of secondary electrons is suppressed by the presence of a negative external proximal charge and that the work function of Gold is so high that the emission of a primary thermionic electron is almost zero at room temperature unless the chemical potential can rise by many volts, however with the charged purple spheres the chemical potential will never get so high. Relevant to this idea is the drawing of the gold leaf electroscope below, from this you can see the effect of an external charge on a conductor.

Furthermore even if the chemical potential could rise so significantly as to have an emission of thermionic electrons from the collector the emission would in the main part simply be reflected back by the overhead electrostatic barrier (purple spheres).

For those wishing to test this idea mathematically assume the charge on the purple reflector is equal a piece of silicon with electrons trapped at a spacing of 1E-9m and the distance to the upper Gold collector is 1mm. Use a vertical dimension of at least 5mm from the emitter to the upper ledge.

In any case this led to the idea below of arranging the geometry such that the charged region was a mid layer, not as easy to understand and it is not as effective but it allows a more compact device where we can take advantage of quantum tunnelling.

QUENCO P.E. to K.E.

QUENCO P.E. to K.E.

Migration of charge in a conductor under the influence of a charged region

High School Gold Leaf Experiment

High School Gold Leaf Experiment

[/jbox]

 

Their largest hurdle according to Quentron is the Mainstream Scientific Community. I can only hope that scientists will use the scientific process regarding Quentron’s theory instead of falling back on belief.

Ken.

  • Simon Derricutt

    Philip Hardcastle has had the same nagging doubts as I do (and it seems quite a few others as well) on the validity of the 2nd Law of Thermodynamics. The main problem is that is a statistical Law, so really doesn’t apply when you look at individual energy transactions but only when you looks at statistically large numbers. In most cases, of course, we’re always dealing with such large numbers since atoms are so small, but quantum effects do come up here and the ideas should work. I don’t think Philip will be able to achieve the energy densities he calculates, simply because the manufacturing difficulties are so high, but if he achieves 1% of his target then it will be a very useful device.

    Note that at MIT they have found that at very low forward currents, a normal LED will emit more energy in light than it uses in electrical power, with the excess energy coming from the heat of the LED (it cools down). This is somewhat of a confirmation that Philip’s ideas should work, and that it is not just an interesting thought experiment. It will likely take longer than hoped before the device can be manufactured in quantity, but I’d expect that in maybe 5 years you’ll start to see these devices on the market.

  • MarkE

    I think this one falls under the category of: “Men who stare at goats”.

    What does the inventor present? He presents a black box that is supposed to be able to create a virtual heat sink that is always lower than ambient even down to an arbitrarily low ambient temperature. Energy from external heat flow towards that heat sink is supposed to be converted to electricity where it can be carried off somewhere to perform useful work.

    So what are the problems or issues that the inventor needs to prove? He could prove this at a macro level. According to his web site at least two attempts to do that have failed. The inventor tells us that the failures were do to fabrication defects and not failure of the basic concept. Unfortunately, he has not published any data that would allow anyone even with the most open mind to evaluate.

    The MIT LED experiment in no way violates the second law of thermodynamics. Remove the external electrical power source and the LEDs neither shine nor cool down. They are for practice and purpose electrically powered heat pumps.

    Here is a little Gedanken: If such devices could be fabricated, then what happens when there is no electrical load? Do they pump up the terminal voltage until some dielectric breaks down? Do they self-destruct? Consider also what happens when they are shorted. Do they pump their environment down to 0K?

    Finally, I understand that these devices are very, very thin and that the cold part is in the middle. How can one maintain a big temperature difference across a thin separator? If the inventor has that licked, then even if his devices don’t work to generate energy from ambient heat as is by far most likely, the insulation characteristics might make them highly valuable for other applications.

    • Simon Derricutt

      Mark – the macro experiment you wanted is the “Sebithenco” valve demonstration on the Quenco docs. I haven’t tried this myself, but I have no doubt that it works. If I turned up a valve in the bits box from many years ago, I might test it personally. Another macro demonstration can be found at http://www.execonn.com/maxwell/maxwells_demon.html where Dudley tests out an alternate but similar idea of catching the tail of the distribution.

      The Quenco device is difficult to physically construct, and I’m not that surprised he’s had a few failures along the way. Of course, he’s also spent a lot of time trying to find other ways round the 2LoT that have failed to impress. He does however seem to be honestly working towards his goal despite the setbacks. I see the MIT LED experiments as taking the top part of the tail of the thermal velocity distribution and turning it into electrical power and thus light. Much the same really as the Quenco idea.

      Without an electrical load, the Quenco would build up a potential difference until the process was in balance. If you shorted it out, the resistance on the output short would heat up and the Quenco cool down until it was again in balance. As the Quenco cools down, the output would reduce until the temperature was insufficient to overcome the internal gaps and no more electricity would be produced.

      It also seems possible that a rectenna tuned to far IR frequencies might perform much the same as Quenco is supposed to. As you know, such things are in process of being developed.

      You’re right that there may well be spin-offs from the technology developed, even if his original idea can’t be realised.

  • mark dansie

    Everything comes down to simple logic no matter how complex the science or model. In this case its studying the energy flow (where its is comping from and how it is converted). The stumbling block as with many technologies is the limitations of the interface or the efficiency of the energy conversion.
    I always encourage new theories but to date this one has failed to live up to expectations on any experiments conducted to date.
    I am always happy to be corrected.

  • http://Author MemoryMan

    A year ago I exchanged many emails with Philip; as Simon says, LoT2 has been broken/defied in a laboratory. Scaling this up to a commercially viable product will take years., if ever.

  • Kenneth

    So what is the biggest hurdle to developing a viable test for this theory? On Quentron’s website, it appears that there is a plea for help. With any new theory and especially one that contradicts accepted theories, there is a huge roadblock to even exploring possibilities. My biggest concern is that people tend do one of two things, completely throw it out based on “belief” in current theories, or just speculate and never test it themselves.

    • Kenneth

      Point being, whether or not Quentron is full of it or they have something legit…belief has no place in science. Until an attempt to validate or repudiate the claims has been attempted; science has not been served justice.

      • MarkE

        Kenneth, according to his web site: the inventor has tried at least two times and both times failed. The inventor says that the failures were due to improper material processing. Maybe that’s true, and maybe the problem is that the inventor’s idea doesn’t work. The inventor hasn’t published detailed data of any kind for his attempted devices so that doesn’t help determine whether it is just his idea that won’t fly.

        The inventor has published as proof of his basic ideas results of an older test that don’t seem relevant. I for one don’t think his sebihenco tests prove what he thinks they do. However, if I were him and I were convinced that the sebihenco device proves his idea that the second law can be defeated on a macro scale, I would fully document that experiment and put it out for peer review. If it were to hold-up, then that would be a big thing, and getting money to develop his current implementation would be much easier.

        • Kenneth

          Mark

          Thanks for the reply. What you described makes sense. Also from Darth Dansie, the inventor is quite unstable and won’t listen to advice like you mentioned. Smells fishy to me, but it’s an interesting story. Thanks for your input.

          Ken

  • http://Author MemoryMan

    Kenneth, Philip’s biggest hurdle is to manufacture a physical device. Given the required extreme purity of the materials and the nano scale, it is a matter of time and money before he succeeds even in the lab; commercial may never be done.
    Wait for my Plasmerg engine to be completed; I found that Papp left out maple syrup as a vital ingredient in the mix…

    • Kenneth

      Maple syrup?

  • http://Author MemoryMan

    Sure, that’s why nobody thought of it before. Papp lived in Quebec for years. Just don’t tell Bob Rohner- he hasn’t figured it out.

    • Kenneth

      I detect sarcasm….what you’re saying is absurd.

  • http://Author MemoryMan

    Not sarcasm, but injecting some humour.

  • mark dansie

    I think we need humour here. i always enjoyed yours Memory man. I hope TK comes here one day with his warped sense of humor.
    Kind Regards

PGlmcmFtZSBmcmFtZWJvcmRlcj0nMCcgaGVpZ2h0PSc1NDBweCcgc3JjPSdodHRwczovL3d3dy50aHVuZGVyY2xhcC5pdC9wcm9qZWN0cy8xNjM1NS1hZGQtbW90aW9uLXRvLWFueS1jb25zb2xlLWdhbWUvZW1iZWQnIHdpZHRoPScyNTBweCc+PC9pZnJhbWU+
Every so often we will be displaying crowdfunding campaigns that show potential to make it big. For starters, Mark Dansie has met a group that stands to make it big in the game technology arena. Check out Mad Genius Controller's campaign here.